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Abstract— Accurate climate forecasting is essential for mit-
igating risks and optimizing operations across sectors such
as agriculture, transportation, and energy management. Tra-
ditional numerical weather prediction systems rely on complex
modeling and high computational resources, limiting their
adaptability and scalability. Machine learning-based weather
prediction offers a promising alternative by leveraging his-
torical data to improve forecast accuracy and efficiency. Zeus
introduces a decentralized climate forecasting framework built
on Bittensor’s blockchain, fostering a competitive ecosystem
where machine learning engineers fine-tune state-of-the-art
models under defined constraints. Zeus provides a modular and
scalable approach that can integrate environmental variables
over time. A novel incentive mechanism ensures fair evalua-
tions through difficulty-adjusted rewards, while out-of-sample
forecasting prevents overfitting and enhances predictive relia-
bility. By decentralizing climate forecasting, Zeus democratizes
access to advanced modeling techniques, ensuring continuous
innovation, transparency, and resilience against climate change.

1 Introduction

Climate forecasting plays a critical role in a wide array
of sectors, from transportation to public safety, agriculture,
and energy management. Accurate climate predictions enable
governments, businesses, and individuals to make informed
decisions that minimize risks and optimize operations. As
climate change continues to alter weather patterns, the need
for accurate, timely, and robust climate forecasting systems is
becoming even more critical, highlighting the importance of
advancing forecasting techniques and technologies to better
address these emerging challenges.

The conventional end-to-end weather prediction pipeline,
based on numerical weather prediction (NWP) systems,
is a complex, multi-stage process that integrates diverse
observational data and advanced modeling techniques. It
begins with data acquisition, which involves the collec-
tion of observations from remote sensing instruments, in-
situ platforms, radar systems, and radiosondes, alongside
derived products such as atmospheric motion vectors. This
is followed by atmospheric state estimation, where raw and
processed data are assimilated with prior forecasts to create
a comprehensive approximation of the current atmospheric
state. Next, the forecasting stage uses this state as an initial
condition to predict future atmospheric conditions through
models based on fluid mechanics and thermodynamics. Fi-
nally, post-processing and downstream applications refine
these predictions using statistical techniques and higher-
resolution regional models, generating actionable local fore-
casts (Vaughan et al., 2024).

Egill de Visser

This intricate workflow demands significant computational
resources and expertise, with improvements to conventional
NWP methods often relying on highly trained experts de-
veloping better models, algorithms, and approximations—a
process that can be time-consuming and costly (Vaughan et
al., 2024; Lam et al., 2023; Price et al., 2024).

Machine learning-based weather prediction (MLWP) is
rapidly advancing and presents a competitive alternative to
traditional NWP systems. By training models on historical
data, MLWP can capture complex atmospheric patterns that
are difficult to represent with traditional equations. This ap-
proach holds the potential to improve forecast accuracy while
offering greater efficiency, leveraging modern deep learning
hardware instead of supercomputers to achieve favorable
speed—accuracy trade-offs (Lam et al., 2023). While NWP
systems like ECMWF’s high-resolution forecast (HRES)
have been the standard for medium-range forecasting, recent
developments in MLWP have demonstrated superior perfor-
mance in certain areas, including forecast skill and efficiency.
These advancements have allowed MLWP not only to match,
but in some cases to surpass the accuracy of traditional NWP
systems (Lam et al., 2023; Price et al., 2024).

1.1 The Role of Zeus

Zeus introduces a novel approach to MLWP by leveraging
Bittensor’s network to create a competitive ecosystem of
forecasting models. Zeus is a decentralized climate fore-
casting framework that initially focuses on predicting a
single variable, the temperature two meters above the Earth’s
surface. Built with modularity at its core, the framework is
designed to evolve into a more comprehensive forecasting
framework. It enables the seamless integration of additional
environmental variables over time. Zeus leverages a global
network of engineers to distribute forecast challenges, opti-
mizing state-of-the-art AI models for greater accuracy and
efficiency.

Machine learning engineers within the Zeus subnet in-
dependently fine-tune models under defined time and hard-
ware constraints, creating an environment where innovation
thrives. By competing to refine the models, engineers adopt
cutting-edge techniques that offer a competitive edge, result-
ing in diverse approaches to solving forecasting challenges.
This decentralized architecture not only drives innovation
but also ensures continuous adaptability, allowing Zeus to
respond to local conditions and incorporate new data streams
as they emerge.



Climate forecasting on Zeus is transparent and incen-
tivized through Bittensor’s blockchain, Subtensor. By se-
curely recording key activities related to model development
and reward distribution on-chain, Subtensor provides a trans-
parent, immutable system of record, ensuring the integrity
and public verification of Zeus’s operations. This decen-
tralized framework drives innovation through competition
among engineers, who are all incentivized to contribute to
the continuous improvement of climate forecasting.

2 Bittensor

Bittensor is a network that leverages blockchain technol-
ogy to facilitate decentralized artificial intelligence. In this
ecosystem, a subnet serves as an incentive-driven market-
place which defines the work that the participants of a subnet
— miners and validators — must perform. Miners contribute
by performing useful work defined by the subnet’s incen-
tive mechanism, while validators independently evaluate the
task performed by the subnet miners based on predefined
standards. All the participants, including the subnet owners,
are rewarded with TAO, the native currency of the Bittensor
ecosystem.

3 Architecture

To facilitate the decentralized climate forecasts, Zeus
leverages the core principles of Bittensor network by building
upon its subnet architecture accordingly. Three core roles
form the foundation of the network, each playing a critical
part in operational success:

o Miners are tasked with running forecasting algorithms
that predict environmental variables at specific locations
and timestamps.

« Validators challenge miners with subsets of environ-
mental data and evaluate their performance.

o Subnet owners are responsible for managing the opera-
tional settings and governance of the network. They en-
sure that the incentive mechanism promotes alignment
with network objectives while also fine-tuning system
parameters to enhance performance. Their role is to
keep the network evolving and prevent gamification.

3.1 Workflow

The Zeus subnet employs a workflow that can be broken
down into three stages:

« Stage 1: Validators sent input data to miners.
o Stage 2: Miners respond with a forecast.
o Stage 3: Validators evaluate and reward the forecast.

3.2 Forecast challenge

Miners are challenged by validators to forecast environ-
mental variables for a specified region, requiring hourly
forecasts for a set of latitude-longitude coordinates over a
given time window. Miners receive a 2D geographical grid,
a start time point and a forecast window as input data. Then,

validators require miners to return a forecast for each unique
set of time and location. Initially, the focus is on forecasting
the 2m temperature variable in degrees Kelvin, denoted as
T, representing the temperature two meters above the
Earth’s surface.

3.2.1 Geographical grid A

Miners are given a matrix representing a geographical grid
containing latitude and longitude coordinates. Let A be an
m X n matrix denoted by:
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Here, both m and n are sampled independently from a
discrete uniform distribution

m,n ~ U{a,b}

with lower bound ¢ = 4 and upper bound b = 12,
where each unit step corresponds to 0.25 degrees in latitude
or longitude. The geographical location of matrix A is
selected randomly where the elements a,,,, are evenly spaced
at 0.25 degrees intervals, preserving the structured nature
of the geospatial representation. Each element a,,, in A
corresponds to a unique set of coordinates (i,j) where
1 represents the latitude coordinate and j represents the
longitude coordinate, such that —90 < ¢ < 90 and —180 <
J < 180.

3.2.2 Determining start time tg

Secondly, miners receive a start time point ty. Since the
ground truth values of environmental variables are made
public with a 5-day delay, we provide a dynamic approach
to determine start time point ¢y. Therefore, ¢, is constructed
by calculating the difference between the time at the moment
of sampling tgmT+0 and a time offset p. The time tgmr+0
follows the Copernicus time standard and the offset p is
drawn from a bounded half-normal distribution:

to = tomMT+0 + P

where

p=a+|X| with X~ N(u,o?)

Here, X follows a normal distribution with mean p = 0
and variance 02 = 40. The offset p is then obtained by
taking the absolute value of X, shifting it by a = —119
hours and setting bounding constraints to ensure —119 <
p < 0. This distribution ensures that most values of p are
close to 120 hours (5 days) in the past, while allowing for
more recent forecast initialization. This allows validators to
evaluate miners faster, minimizing storage of forecast values
and allow new miners to contribute. This design simulates the



flexibility of dynamic time initialization, essential for real-
world applications.
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Fig. 1. Bounded half-normal distribution for sampling offset p

3.2.3 Sampling the forecast window h

Lastly, miners also receive a forecast window h. The
forecast window h represents the number of steps ahead that
miners must predict. It is sampled from a discrete uniform
distribution

h ~ Uf{a,b}

where h is a random variable with lower bound a = 1 and
upper bound b = 24, ensuring that forecasts extend between
1 and 24 hours from start time ¢g.

3.2.4 Objective and Response Format

Given matrix A, start time to and forecast window h,
miners are challenged to perform an h-step ahead forecast
T+1,T+2,...,T + h for every set of coordinates (i, j)
denoted by:

(V1o oy = Yoo, Yrezigs - Yrena b ¥V (3,5)

In addition, miners are tasked with constructing matrix
B by replacing the respective elements in A with their
corresponding time series of forecast values {}A/Tﬂ’ij jL
For notational convenience, we simplify {Y7;i;}", to
{Vi.4;} by defining the indices of the forecast window h
ast=1,...,h. Then, B is an m X n matrix denoted by:

Vi d (Vi) (Vi)
- {Y;fyizjl } {}/t,izjz} {Yt7i2jn}
YVeinis} Vesinso} {Veimin}

Matrix B shows a mapping between each unique set of
spatial coordinates (i,7) and its corresponding unique set
of matrix indices mn. Moreover, each value in element
{?t,im ;. } represents the forecast value of temperature Tb,,
corresponding to the coordinate (7, ) at the forecast hour ¢.

3.3 Incentive mechanism

We designed a modular incentive mechanism ensuring fair
assessment of each submission while allowing for specific
needs to evolve the framework. At its core, the optimization
goal is to minimize the average error between the miner
prediction and the actual measured environmental values.
An intuitive approach to measure this error is through the
Root Mean Squared Error (RMSE), which penalizes larger
deviations more heavily. However, RMSE alone does not
incorporate the difficulty of the different forecasting chal-
lenges. To address this limitation, we introduce a weighted
RMSE reward function, which adjusts the standard RMSE
metric by incorporating a weighting factor that reflects the
relative difficulty of each challenge.

3.3.1 Reward function

The reward function we use to evaluate miner performance
is defined as:

1o~ (= wi\’
Reward = 0,1— |~ ==
ewart max | 0, N;( o )

Where:

e N: The number of forecast values in the response,
capturing unique sets of time and location.

o ¢;: The forecasted value.

e y;: The ground truth value.

e 27: The transformed difficulty measure, denoted by:

2! = z; % scaling + offset

where the scaling and offset are configured by the
validator.
e z;: The difficulty measure.

The reward function is structured as follows:

e« When a miner’s forecast is highly accurate, the pre-
diction error approaches zero, resulting in a near-zero
weighted RMSE and a reward value close to 1.

o As the weighted RMSE increases, the reward decreases
proportionally.

o If the unweighted RMSE exceeds z on average, the
reward becomes 0, incentivizing miners to improve their
predictions.

3.3.2  Ground-truth y;

The ground truth values, denoted as y;, represent the actual
environmental measurements against which miner forecasts
are evaluated. The data source for these ground-truth values
is the ERAS reanalysis dataset, provided by the Climate
Data Store (CDS) under the European Union’s Earth obser-
vation programme, Copernicus. ERA5 reanalysis integrates
observational data from satellites, weather stations, and other
sources using advanced numerical modeling techniques. This
dataset offers hourly global measurements across a wide
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range of meteorological and environmental variables, making
it the most comprehensive and reliable dataset for evaluating
forecasting models.

3.3.3 Difficulty z;

Climate forecasting difficulty varies significantly depend-
ing on geographical location. For instance, regions in the
middle of the Pacific Ocean experience relatively stable tem-
perature patterns, meaning a simple average would already
obtain very low RMSE scores. Alternatively, mountainous
regions exhibit high variability, making accurate predictions
more challenging even for advanced models. Without an
adaptive difficulty adjustment, miners could implicitly be
penalized based on the random region assigned to them
rather than their forecasting ability. To mitigate this bias, we
introduce a difficulty-adjusted incentive mechanism using z;.

The z; value, or difficulty value plays a critical role in
establishing an adaptive error threshold that accounts for
temporal and spatial variability. A higher z; value increases
the tolerance for prediction error, whereas a lower z; de-
creases the acceptable error margin.

The difficulty factor z; is derived from the natural vari-
ability of environmental variables in different geographical
locations. The underlying assumption is that regions with
highly volatile temperature patterns are harder to forecast
than regions with stable conditions. To quantify this, we
compute the variance of temperature changes over time at
each geographical location. This variance is calculated on a
monthly basis to account for localized, short-term variability
while avoiding the influence of seasonal trends or long-term
climate shifts. The spatial distribution of temperature 75,
variance is visualized in Figure 2.

By basing the values of z on the natural variance in tem-

perature fluctuations, this approach ensures that the forecast
difficulty is data driven and objectively incorporated.

3.4 Hardware constraints for validators

Validation on Zeus is designed to be lightweight, aimed
to minimise storage and hardware requirements. In addition,
data processing is done locally, but since this has been
highly optimised, validators will not need any GPU or CUDA
support. Validators will only need a decent CPU machine,
where we recommend having at least 8GB of RAM. Since
data is loaded over the internet, it is useful to have at least
a moderately decent (>3MB/s) internet connection.

4 Conclusion

This whitepaper introduces Zeus, a climate forecasting
framework powered by Bittensor’s blockchain technology.
Through its decentralized architecture, Zeus fosters a com-
petitive environment that drives continuous innovation, ad-
vancing the field of climate forecasting.

Zeus prioritizes accessibility, incentivizing engineers to
develop and optimize forecasting models, and minimizing
storage and hardware requirements for validators. This makes
participation in the network easier and more inclusive.
The decentralized architecture, ensures a global, distributed
network of engineers who compete, fostering continuous
innovation and preventing centralized control.

Out-of-sample forecasting makes the subnet ungameable
by preventing miners from exploiting past data, while the z
value further ensures fairness by adjusting the difficulty of
forecast challenges based on historical temperature variabil-
ity. Together, these mechanisms guarantee reliable and fair
evaluations, regardless of geographic complexity.

These features make Zeus an accessible and decentralized



framework for climate forecasting, set to revolutionize the
field while ensuring fair rewards for every contribution along
the way.

5 Future Work

In future iterations, Zeus will continue to scale and adapt
to meet the dynamic needs of the climate forecasting land-
scape. Designed with flexibility in mind, the subnet can
easily integrate new environmental variables in response
to emerging technological advancements or real-world de-
mands. This scalability enables Zeus to evolve into a more
comprehensive forecasting framework, offering increasingly
accurate and accessible forecasts while maintaining its com-
petitive edge.

As the weather forecasting services market is projected to
grow significantly, Zeus is positioned to provide substantial
value by decentralizing the traditionally centralized and
costly forecasting process. The subnet’s adaptability opens
opportunities for a wide range of applications, from disaster
forecasting to grid management, ensuring its relevance across
various industries. Furthermore, by incorporating flexible
grid sizes and adjusting to validator needs, Zeus will enhance
its ability to deliver timely, reliable, and market-driven fore-
casts. This approach not only increases the real-world impact
of the system but also lays the foundation for monetization
strategies, enabling Zeus to contribute meaningfully to the
climate forecasting sector and capitalize on its broad utility.
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